

# Differential geometry I

# Manifolds

A topological space in which every point has a neighborhood homeomorphic to  $\mathbb{R}^n$  (topological disc) is called an *n*-dimensional (or *n*-) manifold





#### 2-manifold

Not a manifold

Earth is an example of a 2-manifold

#### **Charts and atlases**



A homeomorphism  $\alpha : U_{\alpha} \to \mathbb{R}^n$ from a neighborhood  $U_{\alpha}$  of  $x \in X$ to  $\mathbb{R}^n$  is called a **chart** 

A collection of charts whose domains cover the manifold is called an **atlas** 



#### **Charts and atlases**



# Smooth manifolds



Given two charts  $\alpha : U_{\alpha} \to \mathbb{R}^{n}$  and  $\beta : U_{\beta} \to \mathbb{R}^{n}$  with overlapping domains  $U_{\alpha} \cap U_{\beta}$  change of coordinates is done by transition function

$$eta \circ lpha^{-1}: lpha(U_lpha \cap U_eta) 
ightarrow \mathbb{R}^n$$

If all transition functions are  $C^r$ , the manifold is said to be  $C^r$ 

A  $\mathcal{C}^{\infty}$  manifold is called **smooth** 

# Manifolds with boundary



A topological space in which every point has an open neighborhood homeomorphic to either topological disc  $\mathbb{R}^n$ ; or topological half-disc [0,  $\infty$ )  $imes \mathbb{R}^{n-1}$ is called a manifold with boundary Points with disc-like neighborhood are called **interior**, denoted by Int(X)

Points with half-disc-like neighborhood are called **boundary**, denoted by  $\partial X$ 

### **Embedded surfaces**

- Boundaries of tangible physical objects are two-dimensional manifolds.
- They reside in (are embedded into, are subspaces of) the ambient three-dimensional Euclidean space.
- Such manifolds are called embedded surfaces (or simply surfaces).
- Can often be described by the map  $x: U \subset \mathbb{R}^2 \to X \subset \mathbb{R}^3$ 
  - $U \subset \mathbb{R}^2$  is a parametrization domain.
  - the map  $x(u) = (x^1(u^1, u^2), x^2(u^1, u^2), x^3(u^1, u^2))$

is a global parametrization (embedding) of  $\boldsymbol{X}$  .

- Smooth global parametrization does not always exist or is easy to find.
- Sometimes it is more convenient to work with multiple charts.

#### **Parametrization of the Earth**





 $x^{1} = r \cos u^{2} \cos u^{1}$  $x^{2} = r \sin u^{2} \cos u^{1}$  $x^{3} = r \sin u^{1}$ 

# Tangent plane & normal

At each point  $u \in U$ , we define **local system of coordinates** 

$$x_1 = \frac{\partial x}{\partial u^1} \qquad x_2 = \frac{\partial x}{\partial u^2}$$

- A parametrization is **regular** if  $x_1$ and  $x_2$  are **linearly independent**.
- The plane  $T_x X = \text{span}\{x_1, x_2\}$ is **tangent plane** at x = x(u).
- Local Euclidean approximation of the surface.
- $N \perp T_x X$  is the **normal** to surface.





# Orientability

- Normal is defined up to a sign.
- Partitions ambient space into inside and outside.

• A surface is **orientable**, if normal N depends smoothly on x.



(3<u>1</u>94<del>9e</del>2ti

# First fundamental form

- Infinitesimal displacement on the chart du.
- Displaces x on the surface by

$$dx = x(u + du) - x(u)$$
  
=  $x_1 du^1 + x_2 du^2$   
=  $J du$ 

*J* is the **Jacobain matrix**, whose columns are  $x_1$  and  $x_2$ .





# First fundamental form

Length of the displacement

$$d\ell^2 = ||dx||^2 = du^{\mathsf{T}} J^{\mathsf{T}} J du$$
$$= du^{\mathsf{T}} G du$$

G is a symmetric positive definite 2×2 matrix.

Elements of G are inner products

$$g_{ij} = \langle x_i, x_j \rangle$$

Quadratic form

$$d\ell^2 = du^{\mathsf{T}} G du$$

is the first fundamental form.





# First fundamental form of the Earth

#### Parametrization

$$x = (r \cos u^2 \cos u^1, r \sin u^2 \cos u^1, r \sin u^1)$$

Jacobian

$$x_1 = (-r \cos u^2 \sin u^1, -r \sin u^2 \sin u^1, r \cos u^1)$$
  

$$x_2 = (-r \sin u^2 \cos u^1, r \cos u^2 \cos u^1, 0)$$

First fundamental form

$$G = \begin{pmatrix} \langle x_1, x_1 \rangle & \langle x_1, x_2 \rangle \\ \langle x_1, x_2 \rangle & \langle x_2, x_2 \rangle \end{pmatrix}$$
$$= r \begin{pmatrix} 1 & 0 \\ 0 & \cos^2 u^1 \end{pmatrix}$$

### First fundamental form of the Earth



$$G = r \left( \begin{array}{cc} 1 & 0 \\ 0 & \cos^2 u^1 \end{array} \right)$$

# First fundamental form

Smooth **curve** on the chart:

 $\gamma:[a,b]\to U$ 

Its image on the surface:

 $\Gamma = x \circ \gamma$ 

- Displacement on the curve: dt
- Displacement in the chart:

$$d\gamma = \gamma(t + dt) - \gamma(t)$$
  
=  $\dot{\gamma}(t)dt$ 

**Length** of displacement on the surface:

$$d\ell = \sqrt{\dot{\gamma}(t)^{\mathsf{T}} G(\gamma(t)) \dot{\gamma}(t)} \, dt$$





### Intrinsic geometry

Length of the curve

$$L(\Gamma) = \int_{\Gamma} d\ell = \int_{a}^{b} \sqrt{\dot{\gamma}(t)^{\mathsf{T}} G(\gamma(t)) \dot{\gamma}(t)} dt$$

First fundamental form induces a length metric (intrinsic metric)

$$d_X(x_1, x_2) = \min_{\substack{\Gamma \\ \Gamma(0) = x_1, \Gamma(1) = x_2}} L(\Gamma)$$

- Intrinsic geometry of the shape is completely described by the first fundamental form.
- First fundamental form is invariant to isometries.

# Area

- Differential area element on the chart: rectangle  $du^1 \times du^2$
- Copied by x to a parallelogram  $du^1x_1 \times du^2x_2$  in tangent space.
  - Differential area element on the surface:

$$da = \|du^{1}x_{1} \times du^{2}x_{2}\|$$
  
=  $\|x_{1} \times x_{2}\| du^{1} du^{2}$   
=  $\sqrt{\|x_{1}\|^{2} \|x_{2}\|^{2}} - \langle x_{1}, x_{2} \rangle^{2} du^{1} du$   
=  $\sqrt{g_{11}g_{22}} - g_{12}^{2} du^{1} du^{2}$   
=  $\sqrt{\det G} du^{1} du^{2}$ 





#### Area

Area or a region  $\Omega \subseteq X$  charted as  $\Omega = x(\omega \subseteq U)$ 

$$\mu(\Omega) = \int_{\Omega} da = \int_{\omega} \sqrt{\det G} du^1 du^2$$

**Relative area** 

$$\nu(\Omega) = \frac{\mu(\Omega)}{\mu(X)}$$

Probability of a point on X picked at random (with uniform distribution) to fall into  $\Omega$ .

Formally

•  $\mu(\Omega), \nu(\Omega)$  are **measures** on X.

# Curvature in a plane

Let  $\Gamma : [0, L] \to \mathbb{R}^2$  be a smooth curve parameterized by arclength

$$\int_a^b \|\dot{\Gamma}(t)\| dt = |a-b|$$

- **Γ** trajectory of a race car driving at constant velocity.
- velocity vector (rate of change of position), tangent to path.
- $\ddot{\Gamma}$  acceleration (curvature) vector, perpendicular to path.
- $\kappa = \|\ddot{\Gamma}\|_2$  curvature, measuring rate of rotation of velocity vector.



# **Curvature on surface**

- Now the car drives on terrain X.
- Trajectory described by  $\Gamma$  :  $[0, L] \rightarrow X$ .
- - $\mathbf{P}_{T_{\Gamma}X}\ddot{\Gamma}$  geodesic curvature vector.
  - $\mathbf{P}_N \ddot{\mathbf{\Gamma}}$  normal curvature vector.
- Normal curvature  $\kappa_n = \langle N, \ddot{\Gamma} \rangle$
- Curves passing in different directions
   have different values of  $\kappa_n$ .

Said differently:

• A point  $x \in X$  has **multiple curvatures**!



# **Principal curvatures**

For each direction  $v \in T_x X$ , a curve  $\Gamma$  passing through  $\Gamma(0) = x$  in the direction  $\dot{\Gamma}(0) = v$  may have a different normal curvature  $\kappa_n$ 

#### Principal curvatures

$$\kappa_{1} = \min_{v \in T_{x}X} \langle N, \ddot{\Gamma} \rangle$$
  
$$\kappa_{2} = \max_{v \in T_{x}X} \langle N, \ddot{\Gamma} \rangle$$

Principal directions

$$T_{1} = \arg \min_{v \in T_{x}X} \langle N, \ddot{\Gamma} \rangle$$
$$T_{2} = \arg \max_{v \in T_{x}X} \langle N, \ddot{\Gamma} \rangle$$



# Curvature

- **Sign of normal curvature** = direction of rotation of normal to surface.
  - $\kappa_n > 0$  a step in direction  $\dot{\Gamma}$  rotates N in same direction.
  - $\kappa_n < 0$  a step in direction  $\dot{\Gamma}$  rotates N in **opposite direction**.



#### **Curvature: a different view**

- A plane has a constant normal vector, e.g. N = (0, 0, 1).
- We want to quantify how a curved surface is different from a plane.
- Rate of change of N i.e., how fast the normal rotates.
- **Directional derivative** of N at point  $x \in X$  in the direction  $v \in T_x X$

$$D_v N = \lim_{t \to 0} \frac{1}{t} (N(\Gamma(t)) - N(x)) = \left. \frac{d}{dt} N(\Gamma(t)) \right|_{t=0}$$

 $\Gamma: (-\epsilon, +\epsilon) \to X$  is an arbitrary smooth curve with  $\Gamma(0) = x$ and  $\dot{\Gamma}(0) = v$ .

# Curvature

- $D_v N$  is a vector in  $\mathbb{R}^3$  measuring the change in N as we make differential steps in the direction v.
  - Differentiate 1 =  $\langle N, N \rangle$  w.r.t. t

$$0 = \frac{d}{dt} \langle N, N \rangle = 2 \langle D_v N, N \rangle$$

- Hence  $D_v N \perp N$  or  $D_v N \in T_x X$ .
- Shape operator (a.k.a. Weingarten map): is the map  $S: T_x X \to T_x X$  defined by

$$S(v) = -D_v N$$



Julius Weingarten (1836-1910)

### Shape operator

Can be expressed in **parametrization coordinates** as S(v) = SvS is a 2×2 matrix satisfying

$$\left(\begin{array}{c}S(x_1)\\S(x_2)\end{array}\right) = S\left(\begin{array}{c}x_1\\x_2\end{array}\right)$$

Multiply by  $(x_1, x_2)$ 

$$\begin{pmatrix} S(x_1) \\ S(x_2) \end{pmatrix} (x_1, x_2) = S\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} (x_1, x_2)$$
$$B = SG$$

where

$$B = \begin{pmatrix} \langle S(x_1), x_1 \rangle & \langle S(x_1), x_2 \rangle \\ \langle S(x_2), x_1 \rangle & \langle S(x_2), x_2 \rangle \end{pmatrix} = - \begin{pmatrix} \langle \partial_{u^1} N, x_1 \rangle & \langle \partial_{u^1} N, x_2 \rangle \\ \langle \partial_{u^2} N, x_1 \rangle & \langle \partial_{u^2} N, x_2 \rangle \end{pmatrix}$$

# Second fundamental form

The matrix B gives rise to the quadratic form

$$B(v,w) = \langle S(v),w\rangle = w^{\mathsf{T}}Bv$$

called the second fundamental form.

Related to shape operator and first fundamental form by identity

$$S = BG^{-1}$$

#### **Principal curvatures encore**

- Let  $\Gamma : [0, L] \to X$  be a curve on the surface.
- Since  $\dot{\Gamma} \in T_x X$ ,  $\langle \dot{\Gamma}, N \rangle = 0$ .
- Differentiate w.r.t. to t

$$0 = \frac{d}{dt} \langle \dot{\Gamma}, N \rangle = \langle \ddot{\Gamma}, N \rangle + \langle \dot{\Gamma}, \frac{d}{dt} N \rangle$$
$$\kappa_n = \langle \ddot{\Gamma}, N \rangle = \langle \dot{\Gamma}, -D_{\dot{\Gamma}} N \rangle = B(\dot{\Gamma}, \dot{\Gamma}) = \dot{\Gamma}^{\top} B \dot{\Gamma}$$

- $\quad \kappa_1 \leq \dot{\Gamma}^{\mathsf{T}} B \dot{\Gamma} \leq \kappa_2$
- $\kappa_1$  is the **smallest eigenvalue** of B.
- $\kappa_2$  is the **largest eigenvalue** of *B*.
- $T_1, T_2$  are the corresponding **eigenvectors**.

### Second fundamental form of the Earth

Parametrization  $x = (r \cos u^2 \cos u^1, r \sin u^2 \cos u^1, r \sin u^1)$ Normal

$$N = (\cos u^2 \cos u^1, \sin u^2 \cos u^1, \sin u^1)$$
  

$$\partial_{u^1} N = (-\cos u^2 \sin u^1, -\sin u^2 \sin u^1, \cos u^1)$$
  

$$\partial_{u^2} N = (-\sin u^2 \cos u^1, \cos u^2 \cos u^1, 0)$$

Second fundamental form

$$B = -\left(\begin{array}{ccc} \langle \partial_{u^1} N, x_1 \rangle & \langle \partial_{u^1} N, x_2 \rangle \\ \langle \partial_{u^2} N, x_1 \rangle & \langle \partial_{u^2} N, x_2 \rangle \end{array}\right) = -\frac{1}{r}G = \left(\begin{array}{ccc} -1 & 0 \\ 0 & -\cos^2 u^1 \end{array}\right)$$

#### Shape operator of the Earth

First fundamental form

Second fundamental form

$$G = r \begin{pmatrix} 1 & 0 \\ 0 & \cos^2 u^1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 0 \\ 0 & -\cos^2 u^1 \end{pmatrix}$$
  
Shape operator  $S = BG^{-1} = -\frac{1}{r}I$ 

Constant at every point.

Is there connection between algebraic invariants of shape operator S (trace, determinant) with geometric invariants of the shape?

#### Mean and Gaussian curvatures

- Mean curvature  $H = \frac{1}{2}(\kappa_1 + \kappa_2) = \frac{1}{2}$ trace S
- **Gaussian curvature**  $K = \kappa_1 \kappa_2 = \det S$



# Extrinsic & intrinsic geometry

- **First fundamental** form describes completely the **intrinsic geometry**.
- Second fundamental form describes completely the extrinsic geometry the "layout" of the shape in ambient space.
- First fundamental form is invariant to isometry.
- Second fundamental form is invariant to rigid motion (congruence).
- If X and f(X) are **congruent** (i.e.,  $f \in \text{Iso}(\mathbb{R}^3)$ ), then

they have identical intrinsic and extrinsic geometries.

- Fundamental theorem: a map preserving the first and the second fundamental forms is a congruence.
  - Said differently: an isometry preserving second fundamental form is a restriction of Euclidean isometry.