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Numerical geometry of non-rigid shapes

Manifolds

A topological space in which every point has a neighborhood homeomorphic

to R"™ (topological disc) is called an n-dimensional (or n-) manifold

2-manifold Not a manifold

Earth is an example of a 2-manifold
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Charts and atlases

A homeomorphism ¢ : U, — R"
from a neighborhood U/, of x € X

to R™ is called a chart

A collection of charts whose domains

cover the manifold is called an atlas

Chart o : Uy — R2

Oé(Ua) C RQ
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Numerical geometry of non-rigid shapes

Charts and atlases
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Numerical geometry of non-rigid shapes

Smooth manifolds

Given two charts « : U, — R"™ and
B Ug— R™ with overlapping
domains U, N UB change of
coordinates is done by transition

function

Boa l: a(UaNUg) — R"

If all transition functions are C", the

manifold is said to be ("

A C° manifold is called smooth
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Manifolds with boundary

A topological space in which every

point has an open neighborhood

homeomorphic to either
topological disc R™; or
topological half-disc [0, c0) x R? 1

Is called a manifold with boundary

Points with disc-like neighborhood are

called interior, denoted by Int(X)

Points with half-disc-like neighborhood
are called boundary, denoted by X
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Embedded surfaces

Boundaries of tangible physical objects are two-dimensional manifolds.
They reside in (are embedded into, are subspaces of) the ambient
three-dimensional Euclidean space.

Such manifolds are called embedded surfaces (or simply surfaces).

Can often be described by themap = : U C R? — X C R3

UcR2isa parametrization domain.
themap z(u) = (2 (u',u?),z?(ut, uv?), 2> (ul, u?))

IS a global parametrization (embedding) of X .

Smooth global parametrization does not always exist or is easy to find.

Sometimes it is more convenient to work with multiple charts.
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Parametrization of the Earth

longitude
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Tangent plane & normal

At each point ¢, € U, we define

local system of coordinates

_ Ox ox
 oul

L1 L2

 Ou2
A parametrization is regular if x4

and z, are linearly independent.

The plane T, X = span{zi,zo}
is tangent plane at x = z(u).
Local Euclidean approximation
of the surface.

N_1T,X isthe normal to surface.
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Orientability

Normal is defined up to a sign.
Partitions ambient space into inside
and outside.

A surface is orientable, if normal N

depends smoothly on = .
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First fundamental form

Infinitesimal displacement on the
chart du .
Displaces x on the surface

by
dx r(u+ du) — x(u)

:Eld’u,l + :Egdfu,2
Jdu

J 1s the Jacobain matrix, whose

columns are x4 and x- .
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First fundamental form

Length of the displacement

d? = ||dz||? = du'J ' Jdu
du ' Gdu

G 1S a symmetric positive

definite 2x2 matrix.

Elements of G are inner products

9ij = (T4, T;)

Quadratic form

d? = du'Gdu

Is the first fundamental form.
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First fundamental form of the Earth

Parametrization

r = (rcosu?cosul,rsinu® cosul,rsinul)

Jacobian

2 1 2 1

xq (—rcosu“sinu sinul,rcosul)

2 1 2

,—rSinu

x5 = (—rsinu?®cosul,rcosu? cosul,0)

First fundamental form

G ( <£l§‘1,£C1> <$19$2> )

(r1,72) (T2,72)

1 0
"\ 0 cos2yl
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First fundamental form of the Earth

longitude
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First fundamental form

Smooth curve on the chart:
~:la,b] = U
Its image on the surface:

[ =xzo0vy
Displacement on the curve: dt
Displacement in the chart:

dry v(t +dt) —~(t)
A(t)dt
Length of displacement on the

surface:

d = AW TG ) (t) dt
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Intrinsic geometry

Length of the curve

ury = [a = [ \AOTeam)

First fundamental form induces a length metric (intrinsic metric)

dx(z1,22) = min L(I")
r(0)=z1,l (1)=z2
Intrinsic geometry of the shape is completely described by the first
fundamental form.

First fundamental form is invariant to isometries.
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Area

Differential area element on the

chart; rectangle dul x du?

Copied by x to a parallelogram
dulxl X du2.:c2 In tangent space.
Differential area element on the
surface:
do = |dulzy x du’zs|

|21 X zo||dutdu?

2 2 2 1
lz 12 zal? = (21, 22)2 duldu?

> 1,2
\/911922 — g1o du~du

Vdet G duldu?
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Area

Areaoraregion 2 C X chartedas QQ = z(w C U)

w() = [Qda = /\/detGduldu2
w

Relative area
p(€2)

v(Q2) = m

Probability of a point on X picked at random (with uniform

distribution) to fall into ¢ .

Formally

w(2),v(2) are measures on X .
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Curvature in a plane

Let " : [0,L] — R?2 be a smooth curve parameterized by arclength

b .
[IF@lldt = Ja—b

a
[ trajectory of a race car driving at constant velocity.
[ velocity vector (rate of change of position), tangent to path.
[ acceleration (curvature) vector, perpendicular to path.

K = |||:||2 curvature, measuring rate of rotation of velocity vector.
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Curvature on surface

Now the car drives on terrain X .
Trajectory described by " : [0, L] — X.

Curvature vector [~ decomposes into

PTI_Xﬁ geodesic curvature vector.

PN[—' normal curvature vector.
Normal curvature r, = (N,T)
Curves passing in different directions

have different values of «,, .

Said differently:

A point € X has multiple curvatures!
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Principal curvatures

For each direction v € T,,.X , a curve
[ passing through (0) = z inthe
direction ["(0) = v may have
a different normal curvature

Principal curvatures

= min (N.T
| UET{L‘X< ) >

ko = max (N.T
2 ’UETQ:X< )

Principal directions

— arg min (N.T
g’UETxX< ’ >

arg max (N, r
g’UET:cX< >
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Curvature

Sign of normal curvature = direction of rotation of normal to surface.

kn > O astepin direction [~ rotates N in same direction.

kn < O astepindirection [~ rotates N in opposite direction.
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Curvature: a different view

A plane has a constant normal vector,e.g. N = (0,0,1) .
We want to quantify how a curved surface is different from a plane.

Rate of change of N i.e., how fast the normal rotates.

Directional derivative of N at point x € X inthe direction v € T, X

DyN = li_%%(N(r(t))_N(m)) = %N(r(t))t:

[ : (—e,+€) — X isan arbitrary smooth curve with M(0) = «x
and [(0) = .
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Curvature

D, N isavectorin R3 measuring the

change in NN as we make differential steps
In the direction v.

Differentiate 1 = (N, N) w.r.t. ¢

d
0 = —(N,N) = 2(DuN,N)

Hence DyNLN or DyN € Tz X - Julius Weingarten
Shape operator (a.k.a. Weingarten map): (1836-1910)

Isthemap S :T,X — T, X defined by

S(v) = —DyN
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Shape operator

Can be expressed in parametrization coordinates as S(v) = Swv

S iIs a 2x2 matrix satisfying

S(x1) \ _
( S(x2) ) = S(

Multiply by (21, 25)

S(x1)
( S(QJ;) ) (3319332)
B

where

B = ( <S($l)3$1> (S($1),$2> —
(S(z2),z1) (S(x2),22)
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Second fundamental form

The matrix B gives rise to the quadratic form

B(v,w) = (S(v),w) = w ' By

called the second fundamental form.

Related to shape operator and first fundamental form by identity

s = BG!
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Principal curvatures encore

Let ™ : [0, L] — X be acurve on the surface.
Since I € T, X, (I,N)=0.

Differentiate w.r.t. to ¢

d . . . d
0 = £<I—’N> = (I_,N)—F(I_,%N)

kn = (N) = (I',—-DgN) = B(I,[") = 'Br

K1 < ' Br < Ko
x1 Is the smallest eigenvalue of B.
ko Is the largest eigenvalue of B.

T4, T> are the corresponding eigenvectors.
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Second fundamental form of the Earth

Parametrization ¢ = (rcosu® cosul,rsinu? cosul,rsinul)

Normal

N = (cosu? cosul,sinu?cosul,sinul)

01N = (—cosu? sinut, —sinu? sinul, cosul)

0, 2N = (—sinu? cosu', cosu? cosut, 0)

Second fundamental form

B—_ [ (9aN,x1) (91N, x2)
(02N, 1) (9,2N,z2)
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Shape operator of the Earth

First fundamental form Second fundamental form

1 0 [ -1 O
G = T(O COSQ’LL]') B_( 0] —COSQ’U,]')

Shape operator S = BG~ ! = —EI

T
Constant at every point.

Is there connection between algebraic invariants of shape
operator S (trace, determinant) with geometric invariants of the

shape?
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Mean and Gaussian curvatures

Mean curvature [H = %(,{1 + ko) = %traceS

Gaussian curvature K — kiko = det S

hyperbolic point K <O elliptic point K > 0O
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Extrinsic & intrinsic geometry

First fundamental form describes completely the intrinsic geometry.
Second fundamental form describes completely the extrinsic
geometry — the “layout” of the shape in ambient space.

First fundamental form is invariant to isometry.

Second fundamental form is invariant to rigid motion (congruence).
If X and f(X) arecongruent(i.e., f € Iso(R3) ), then

they have identical intrinsic and extrinsic geometries.

Fundamental theorem: a map preserving the first and the second
fundamental forms is a congruence.

Said differently: an isometry preserving second fundamental form is a

restriction of Euclidean isometry.




