

Differential geometry I

Manifolds

A topological space in which every point has a neighborhood homeomorphic to \mathbb{R}^{n} (topological disc) is called an n-dimensional (or n-) manifold

2-manifold

Not a manifold

Earth is an example of a 2-manifold

Charts and atlases

A homeomorphism $\alpha: U_{\alpha} \rightarrow \mathbb{R}^{n}$ from a neighborhood U_{α} of $x \in X$ to \mathbb{R}^{n} is called a chart

A collection of charts whose domains cover the manifold is called an atlas

Numerical geometry of non-rigid shapes Differential geometry I

Charts and atlases

Smooth manifolds

Given two charts $\alpha: U_{\alpha} \rightarrow \mathbb{R}^{n}$ and $\beta: U_{\beta} \rightarrow \mathbb{R}^{n}$ with overlapping domains $U_{\alpha} \cap U_{\beta}$ change of coordinates is done by transition function

$$
\beta \circ \alpha^{-1}: \alpha\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \mathbb{R}^{n}
$$

If all transition functions are \mathcal{C}^{r}, the manifold is said to be \mathcal{C}^{r}

A \mathcal{C}^{∞} manifold is called smooth

Manifolds with boundary

A topological space in which every point has an open neighborhood homeomorphic to either

- topological disc \mathbb{R}^{n}; or
- topological half-disc $[0, \infty) \times \mathbb{R}^{n-1}$ is called a manifold with boundary

Points with disc-like neighborhood are called interior, denoted by $\operatorname{Int}(X)$

Points with half-disc-like neighborhood are called boundary, denoted by ∂X

Embedded surfaces

- Boundaries of tangible physical objects are two-dimensional manifolds.
- They reside in (are embedded into, are subspaces of) the ambient three-dimensional Euclidean space.
- Such manifolds are called embedded surfaces (or simply surfaces).
- Can often be described by the map $x: U \subset \mathbb{R}^{2} \rightarrow X \subset \mathbb{R}^{3}$
- $U \subset \mathbb{R}^{2}$ is a parametrization domain.
the map $x(u)=\left(x^{1}\left(u^{1}, u^{2}\right), x^{2}\left(u^{1}, u^{2}\right), x^{3}\left(u^{1}, u^{2}\right)\right)$ is a global parametrization (embedding) of X.
- Smooth global parametrization does not always exist or is easy to find.
- Sometimes it is more convenient to work with multiple charts.

Parametrization of the Earth

$$
U=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[-\pi, \pi]
$$

$$
\begin{aligned}
& x^{1}=r \cos u^{2} \cos u^{1} \\
& x^{2}=r \sin u^{2} \cos u^{1} \\
& x^{3}=r \sin u^{1}
\end{aligned}
$$

Tangent plane \& normal

- At each point $u \in U$, we define local system of coordinates

$$
x_{1}=\frac{\partial x}{\partial u^{1}} \quad x_{2}=\frac{\partial x}{\partial u^{2}}
$$

- A parametrization is regular if x_{1} and x_{2} are linearly independent.
- The plane $T_{x} X=\operatorname{span}\left\{x_{1}, x_{2}\right\}$ is tangent plane at $x=x(u)$.
- Local Euclidean approximation of the surface.
- $N \perp T_{x} X$ is the normal to surface.

X

Möbius stripe
August Ferdinand Möbius

FelikIEhrigbtionleklein

First fundamental form

- Infinitesimal displacement on the chart $d u$.
- Displaces x on the surface by

$$
\begin{aligned}
d x & =x(u+d u)-x(u) \\
& =x_{1} d u^{1}+x_{2} d u^{2} \\
& =J d u
\end{aligned}
$$

- J is the Jacobain matrix, whose columns are x_{1} and x_{2}.

First fundamental form

- Length of the displacement

$$
\begin{aligned}
d \ell^{2}=\|d x\|^{2} & =d u^{\top} J^{\top} J d u \\
& =d u^{\top} G d u
\end{aligned}
$$

- G is a symmetric positive definite 2×2 matrix.
- Elements of G are inner products

$$
g_{i j}=\left\langle x_{i}, x_{j}\right\rangle
$$

- Quadratic form

$$
d \ell^{2}=d u^{\top} G d u
$$

is the first fundamental form.

First fundamental form of the Earth

- Parametrization

$$
x=\left(r \cos u^{2} \cos u^{1}, r \sin u^{2} \cos u^{1}, r \sin u^{1}\right)
$$

- Jacobian

$$
\begin{aligned}
& x_{1}=\left(-r \cos u^{2} \sin u^{1},-r \sin u^{2} \sin u^{1}, r \cos u^{1}\right) \\
& x_{2}=\left(-r \sin u^{2} \cos u^{1}, r \cos u^{2} \cos u^{1}, 0\right)
\end{aligned}
$$

- First fundamental form

$$
\begin{aligned}
G & =\left(\begin{array}{ll}
\left\langle x_{1}, x_{1}\right\rangle & \left\langle x_{1}, x_{2}\right\rangle \\
\left\langle x_{1}, x_{2}\right\rangle & \left\langle x_{2}, x_{2}\right\rangle
\end{array}\right) \\
& =r\left(\begin{array}{cc}
1 & 0 \\
0 & \cos ^{2} u^{1}
\end{array}\right)
\end{aligned}
$$

First fundamental form of the Earth

$$
G=r\left(\begin{array}{cc}
1 & 0 \\
0 & \cos ^{2} u^{1}
\end{array}\right)
$$

First fundamental form

- Smooth curve on the chart:

$$
\gamma:[a, b] \rightarrow U
$$

- Its image on the surface:

$$
\Gamma=x \circ \gamma
$$

- Displacement on the curve: $d t$
- Displacement in the chart:

$$
\begin{aligned}
d \gamma & =\gamma(t+d t)-\gamma(t) \\
& =\dot{\gamma}(t) d t
\end{aligned}
$$

- Length of displacement on the surface:

$$
d \ell=\sqrt{\dot{\gamma}(t)^{\top} G(\gamma(t)) \dot{\gamma}(t)} d t
$$

Intrinsic geometry

- Length of the curve

$$
L(\Gamma)=\int_{\Gamma} d t=\int_{a}^{b} \sqrt{\dot{\gamma}(t)^{\top} G(\gamma(t)) \dot{\gamma}(t)} d t
$$

- First fundamental form induces a length metric (intrinsic metric)

$$
d_{X}\left(x_{1}, x_{2}\right)=\min _{\Gamma(0)=x_{1}, \Gamma(1)=x_{2}} L(\Gamma)
$$

- Intrinsic geometry of the shape is completely described by the first fundamental form.
- First fundamental form is invariant to isometries.

Area

- Differential area element on the chart: rectangle $d u^{1} \times d u^{2}$
- Copied by x to a parallelogram $d u^{1} x_{1} \times d u^{2} x_{2}$ in tangent space.

- Differential area element on the surface:

$$
\begin{aligned}
d a & =\left\|d u^{1} x_{1} \times d u^{2} x_{2}\right\| \\
& =\left\|x_{1} \times x_{2}\right\| d u^{1} d u^{2} \\
& =\sqrt{\left\|x_{1}\right\|^{2}\left\|x_{2}\right\|^{2}-\left\langle x_{1}, x_{2}\right\rangle^{2}} d u^{1} d u^{2} \\
& =\sqrt{g_{11} g_{22}-g_{12}^{2}} d u^{1} d u^{2} \\
& =\sqrt{\operatorname{det} G} d u^{1} d u^{2}
\end{aligned}
$$

Area

- Area or a region $\Omega \subseteq X$ charted as $\Omega=x(\omega \subseteq U)$

$$
\mu(\Omega)=\int_{\Omega} d a=\int_{\omega} \sqrt{\operatorname{det} G} d u^{1} d u^{2}
$$

- Relative area

$$
\nu(\Omega)=\frac{\mu(\Omega)}{\mu(X)}
$$

- Probability of a point on X picked at random (with uniform distribution) to fall into Ω.

Formally

- $\mu(\Omega), \nu(\Omega)$ are measures on X.

Curvature in a plane

- Let $\Gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be a smooth curve parameterized by arclength

$$
\int_{a}^{b}\|\dot{\Gamma}(t)\| d t=|a-b|
$$

- 「 trajectory of a race car driving at constant velocity.- 「 velocity vector (rate of change of position), tangent to path.
- $\ddot{\Gamma}$ acceleration (curvature) vector, perpendicular to path.
- $\kappa=\|\ddot{\Gamma}\|_{2}$ curvature, measuring rate of rotation of velocity vector.

Curvature on surface

- Now the car drives on terrain X.
- Trajectory described by $\Gamma:[0, L] \rightarrow X$.
- Curvature vector $\ddot{\Gamma}$ decomposes into
- $\mathbf{P}_{T_{\Gamma} X} \ddot{\Gamma}$ geodesic curvature vector.
- $\mathbf{P}_{N} \ddot{\Gamma}$ normal curvature vector.
- Normal curvature $\kappa_{n}=\langle N, \ddot{\Gamma}\rangle$
- Curves passing in different directions have different values of κ_{n}.

Said differently:

- A point $x \in X$ has multiple curvatures!

Principal curvatures

- For each direction $v \in T_{x} X$, a curve
Γ passing through $\Gamma(0)=x$ in the direction $\dot{\Gamma}(0)=v$ may have a different normal curvature κ_{n}
- Principal curvatures

$$
\begin{aligned}
\kappa_{1} & =\min _{v \in T_{x} X}\langle N, \ddot{\Gamma}\rangle \\
\kappa_{2} & =\max _{v \in T_{x} X}\langle N, \ddot{\Gamma}\rangle
\end{aligned}
$$

- Principal directions

$$
\begin{aligned}
& T_{1}=\arg \min _{v \in T_{x} X}\langle N, \ddot{\Gamma}\rangle \\
& T_{2}=\arg \max _{v \in T_{x} X}\langle N, \ddot{\Gamma}\rangle
\end{aligned}
$$

Curvature

- Sign of normal curvature $=$ direction of rotation of normal to surface.
- $\kappa_{n}>0$ a step in direction $\dot{\Gamma}$ rotates N in same direction.
$\kappa_{n}<0$ a step in direction $\dot{\Gamma}$ rotates N in opposite direction.

Curvature: a different view

- A plane has a constant normal vector, e.g. $N=(0,0,1)$.
- We want to quantify how a curved surface is different from a plane.
- Rate of change of N i.e., how fast the normal rotates.

■ Directional derivative of N at point $x \in X$ in the direction $v \in T_{x} X$

$$
D_{v} N=\lim _{t \rightarrow 0} \frac{1}{t}(N(\Gamma(t))-N(x))=\left.\frac{d}{d t} N(\Gamma(t))\right|_{t=0}
$$

$\Gamma:(-\epsilon,+\epsilon) \rightarrow X$ is an arbitrary smooth curve with $\Gamma(0)=x$ and $\dot{\Gamma}(0)=v$.

Curvature

- $D_{v} N$ is a vector in \mathbb{R}^{3} measuring the change in N as we make differential steps in the direction v.
- Differentiate $1=\langle N, N\rangle$ w.r.t. t

$$
0=\frac{d}{d t}\langle N, N\rangle=2\left\langle D_{v} N, N\right\rangle
$$

- Hence $D_{v} N \perp N$ or $D_{v} N \in T_{x} X$.
- Shape operator (a.k.a. Weingarten map):

Julius Weingarten (1836-1910) is the map $S: T_{x} X \rightarrow T_{x} X$ defined by

$$
S(v)=-D_{v} N
$$

Shape operator

- Can be expressed in parametrization coordinates as $S(v)=S v$ S is a 2×2 matrix satisfying

$$
\binom{S\left(x_{1}\right)}{S\left(x_{2}\right)}=S\binom{x_{1}}{x_{2}}
$$

- Multiply by $\left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
\binom{S\left(x_{1}\right)}{S\left(x_{2}\right)}\left(x_{1}, x_{2}\right) & =S\binom{x_{1}}{x_{2}}\left(x_{1}, x_{2}\right) \\
B & =S G
\end{aligned}
$$

where

$$
B=\left(\begin{array}{ll}
\left\langle S\left(x_{1}\right), x_{1}\right\rangle & \left\langle S\left(x_{1}\right), x_{2}\right\rangle \\
\left\langle S\left(x_{2}\right), x_{1}\right\rangle & \left\langle S\left(x_{2}\right), x_{2}\right\rangle
\end{array}\right)=-\left(\begin{array}{cc}
\left\langle\partial_{u^{1}} N, x_{1}\right\rangle & \left\langle\partial_{u^{1}} N, x_{2}\right\rangle \\
\left\langle\partial_{u^{2}} N, x_{1}\right\rangle & \left\langle\partial_{u^{2}} N, x_{2}\right\rangle
\end{array}\right)
$$

Second fundamental form

- The matrix B gives rise to the quadratic form

$$
B(v, w)=\langle S(v), w\rangle=w^{\top} B v
$$

called the second fundamental form.

- Related to shape operator and first fundamental form by identity

$$
S=B G^{-1}
$$

Principal curvatures encore

- Let $\Gamma:[0, L] \rightarrow X$ be a curve on the surface.
- Since $\dot{\Gamma} \in T_{x} X,\langle\dot{\Gamma}, N\rangle=0$.
- Differentiate w.r.t. to t

$$
\begin{gathered}
0=\frac{d}{d t}\langle\dot{\Gamma}, N\rangle=\langle\ddot{\Gamma}, N\rangle+\left\langle\dot{\Gamma}, \frac{d}{d t} N\right\rangle \\
\kappa_{n}=\langle\ddot{\Gamma}, N\rangle=\left\langle\dot{\Gamma},-D_{\dot{\Gamma}} N\right\rangle=B(\dot{\Gamma}, \dot{\Gamma})=\dot{\Gamma}^{\top} B \dot{\Gamma}
\end{gathered}
$$

- $\kappa_{1} \leq \dot{\Gamma}^{\top} B \dot{\Gamma} \leq \kappa_{2}$
- κ_{1} is the smallest eigenvalue of B.
- κ_{2} is the largest eigenvalue of B.
${ }^{-} T_{1}, T_{2}$ are the corresponding eigenvectors.

Second fundamental form of the Earth

- Parametrization $\quad x=\left(r \cos u^{2} \cos u^{1}, r \sin u^{2} \cos u^{1}, r \sin u^{1}\right)$
- Normal

$$
\begin{aligned}
N & =\left(\cos u^{2} \cos u^{1}, \sin u^{2} \cos u^{1}, \sin u^{1}\right) \\
\partial_{u^{1}} N & =\left(-\cos u^{2} \sin u^{1},-\sin u^{2} \sin u^{1}, \cos u^{1}\right) \\
\partial_{u^{2}} N & =\left(-\sin u^{2} \cos u^{1}, \cos u^{2} \cos u^{1}, 0\right)
\end{aligned}
$$

- Second fundamental form

$$
B=-\left(\begin{array}{cc}
\left\langle\partial_{u^{1}} N, x_{1}\right\rangle & \left\langle\partial_{u^{1}} N, x_{2}\right\rangle \\
\left\langle\partial_{u^{2}} N, x_{1}\right\rangle & \left\langle\partial_{u^{2}} N, x_{2}\right\rangle
\end{array}\right)=-\frac{1}{r} G=\left(\begin{array}{cc}
-1 & 0 \\
0 & -\cos ^{2} u^{1}
\end{array}\right)
$$

Shape operator of the Earth

- First fundamental form
- Second fundamental form
$G=r\left(\begin{array}{cc}1 & 0 \\ 0 & \cos ^{2} u^{1}\end{array}\right) \quad B=\left(\begin{array}{cc}-1 & 0 \\ 0 & -\cos ^{2} u^{1}\end{array}\right)$
- Shape operator $S=B G^{-1}=-\frac{1}{r} I$
- Constant at every point.
- Is there connection between algebraic invariants of shape operator S (trace, determinant) with geometric invariants of the shape?

Mean and Gaussian curvatures

- Mean curvature

$$
H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)=\frac{1}{2} \operatorname{trace} S
$$

- Gaussian curvature $K=\kappa_{1} \kappa_{2}=\operatorname{det} S$

hyperbolic point $K<0$

elliptic point $K>0$

Extrinsic \& intrinsic geometry

- First fundamental form describes completely the intrinsic geometry.
- Second fundamental form describes completely the extrinsic geometry - the "layout" of the shape in ambient space.
- First fundamental form is invariant to isometry.
- Second fundamental form is invariant to rigid motion (congruence).
- If X and $f(X)$ are congruent (i.e., $f \in \operatorname{IsO}\left(\mathbb{R}^{3}\right)$), then they have identical intrinsic and extrinsic geometries.
- Fundamental theorem: a map preserving the first and the second fundamental forms is a congruence.
Said differently: an isometry preserving second fundamental form is a restriction of Euclidean isometry.

